Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(5): ar72, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568782

RESUMEN

Cilia generate three-dimensional waveforms required for cell motility and transport of fluid, mucus, and particles over the cell surface. This movement is driven by multiple dynein motors attached to nine outer doublet microtubules that form the axoneme. The outer and inner arm dyneins are organized into 96-nm repeats tandemly arrayed along the length of the doublets. Motility is regulated in part by projections from the two central pair microtubules that contact radial spokes located near the base of the inner dynein arms in each repeat. Although much is known about the structures and protein complexes within the axoneme, many questions remain about the regulatory mechanisms that allow the cilia to modify their waveforms in response to internal or external stimuli. Here, we used Chlamydomonas mbo (move backwards only) mutants with altered waveforms to identify at least two conserved proteins, MBO2/CCDC146 and FAP58/CCDC147, that form part of a L-shaped structure that varies between doublet microtubules. Comparative proteomics identified additional missing proteins that are altered in other motility mutants, revealing overlapping protein defects. Cryo-electron tomography and epitope tagging revealed that the L-shaped, MBO2/FAP58 structure interconnects inner dynein arms with multiple regulatory complexes, consistent with its function in modifying the ciliary waveform.


Asunto(s)
Axonema , Dineínas , Axonema/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Cilios/metabolismo , Proteínas/metabolismo , Flagelos/metabolismo
2.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577467

RESUMEN

Ciliary motility requires the spatiotemporal coordination of multiple dynein motors by regulatory complexes located within the 96 nm axoneme repeat. Many organisms can alter ciliary waveforms in response to internal or external stimuli, but little is known about the specific polypeptides and structural organization of complexes that regulate waveforms. In Chlamydomonas, several mutations convert the ciliary waveform from an asymmetric, ciliary-type stroke to a symmetric, flagellar-type stroke. Some of these mutations alter subunits located at the inner junction of the doublet microtubule and others alter interactions between the dynein arms and the radial spokes. These and other axonemal substructures are interconnected by a network of poorly characterized proteins. Here we re-analyze several motility mutants (mbo, fap57, pf12/pacrg) to identify new components in this network. The mbo (move backwards only) mutants are unable to swim forwards with an asymmetric waveform. Proteomics identified more than 19 polypeptides that are missing or reduced in mbo mutants, including one inner dynein arm, IDA b. Several MBO2-associated proteins are also altered in fap57 and pf12/parcg mutants, suggesting overlapping networks. Two subunits are highly conserved, coiled coil proteins found in other species with motile cilia and others contain potential signaling domains. Cryo-electron tomography and epitope tagging revealed that the MBO2 complex is found on specific doublet microtubules and forms a large, L-shaped structure that contacts the base of IDA b that interconnects multiple dynein regulatory complexes and varies in a doublet microtubule specific fashion.

3.
Proc Natl Acad Sci U S A ; 116(46): 23152-23162, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659045

RESUMEN

The nexin-dynein regulatory complex (N-DRC) in motile cilia and flagella functions as a linker between neighboring doublet microtubules, acts to stabilize the axonemal core structure, and serves as a central hub for the regulation of ciliary motility. Although the N-DRC has been studied extensively using genetic, biochemical, and structural approaches, the precise arrangement of the 11 (or more) N-DRC subunits remains unknown. Here, using cryo-electron tomography, we have compared the structure of Chlamydomonas wild-type flagella to that of strains with specific DRC subunit deletions or rescued strains with tagged DRC subunits. Our results show that DRC7 is a central linker subunit that helps connect the N-DRC to the outer dynein arms. DRC11 is required for the assembly of DRC8, and DRC8/11 form a subcomplex in the proximal lobe of the linker domain that is required to form stable contacts to the neighboring B-tubule. Gold labeling of tagged subunits determines the precise locations of the previously ambiguous N terminus of DRC4 and C terminus of DRC5. DRC4 is now shown to contribute to the core scaffold of the N-DRC. Our results reveal the overall architecture of N-DRC, with the 3 subunits DRC1/2/4 forming a core complex that serves as the scaffold for the assembly of the "functional subunits," namely DRC3/5-8/11. These findings shed light on N-DRC assembly and its role in regulating flagellar beating.


Asunto(s)
Chlamydomonas/metabolismo , Dineínas/metabolismo , Flagelos/ultraestructura , Proteínas Asociadas a Microtúbulos/metabolismo , Chlamydomonas/genética , Chlamydomonas/ultraestructura , Estructura Cuaternaria de Proteína
4.
Mol Biol Cell ; 30(21): 2659-2680, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483737

RESUMEN

Ciliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat and the highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for preassembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus, IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms (IDAs) to a specific location in the 96 nm repeat. IDA8 encodes flagellar-associated polypeptide (FAP)57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple IDAs and regulatory complexes.


Asunto(s)
Proteínas Algáceas/metabolismo , Axonema/metabolismo , Cilios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Proteómica/métodos , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Axonema/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cilios/genética , Cilios/ultraestructura , Microscopía por Crioelectrón/métodos , Dineínas/genética , Tomografía con Microscopio Electrónico , Flagelos/genética , Flagelos/ultraestructura , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Grabación de Cinta de Video/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA